DEUTERIUM-ISOTOPIEEFFEKTE AUF DIE ¹³C-CHEMISCHEN VERSCHIEBUNGEN UND KOHLEN-STOFF-DEUTERIUM KOPPLUNGSKONSTANTEN IN DEUTERIERTEN VERBINDUNGEN

E. BREITMAIER, G. JUNG, W. VOELTER und L. POHL* Chemisches Institut Universität, 74 Tübingen 1, Auf der Morgenstelle; *E. Merck AG, 61 Darmstadt

(Received in Germany 8 February 1973; Received in the UK for publication 30 March 1973)

Abstract – The isotope effects on the ¹³C NMR chemical shifts and coupling constants (¹³C-¹H and ¹³C-²H) have been determined by pulse Fourier transform ¹³C NMR investigation at 22.63 MHz for more than 30 common deuterated and protonated solvents. The observed isotope effects correlate with hybridization and electron withdrawal at the coupling carbon within the series of comparable compounds. In agreement with MO-theoretical calculations a linear correlation between the J_{CD} values of CD_x groups and the J_{CH} values of the corresponding CH_x groups was found. The experimentally determined J_{CD} values show an average deviation from the calculated line J_{CD} = (γ_D/γ_B)J_{CH} = 0.154 × J_{CH} on the order of ± 1 Hz.

Deuterierte Lösungsmittel werden in der Protonenund Kohlenstoff-13-Resonanz in wachsendem Umfang als Lösungsmittel benutzt und zwar aus zwei Gründen. Erstens verursachen die deuterierten Lösungsmittel in der ¹H-NMR-Spektroskopie keine oder nur sehr schwache, von ¹H-Verunreinigungen herrührende Eigensignale. Bei protonenentkoppelten ${}^{13}C-NMR$ -Experimenten (${}^{13}C{}^{1}H{}$) hinreichend konzentrierter Proben sind die deuterierten Kohlenstoffe des Lösungsmittels im allgemeinen als Multipletts erster Ordnung (Tripletts für CD, Quintetts für CD₂ und Septetts für CD₃-Gruppen wegen $I_D = 1$ im Gegensatz zu $I_H = \frac{1}{2}$) mit Kopplungskonstanten von $J_{CD} < 50$ Hz sowie aufgrund ihrer, infolge des fehlenden Kern-Overhauser-Effekts, im Vergleich zu den CH-Signalen geringeren Intensität sehr leicht zu erkennen.1 Zweitens lassen sich die Deuteriumresonanzen zahlreicher deuterierter Verbindungen vorteilhaft als Heterolocksignale, d.h. zur Stabilisierung des Feld/Frequenzverhältnisses verwenden.¹ Zur Identifizierung der Signale deuterierter Lösungsmittel in ¹³C{¹H}-Experimenten ist die Kenntnis des Deuterium-Isotopieeffekts auf die ¹³C-chemischen Verschiebungen sowie der Kohlenstoff-Deuterium-Kopplungskonstanten J_{CD} von Vorteil.

Wie die Zusammenstellung der Daten in Tabelle 1 zeigt, beobachtet man beim Vergleich der ¹³C-Signallagen entsprechender protonierter und deuterierter Kohlenstoffatome einen Isotopieeffekt auf die ¹³C-chemische Verschiebung von weniger als 1.5 ppm. Den grössten Isotopieeffekt aller bisher vermessenen Verbindungen, 1.4 ppm zeigt das Cyclohexan. Meistens sind die Effekte jedoch deutlich kleiner als 1.0 ppm. Der Betrag des Isotopieeffekts scheint mit der Anzahl der substituierenden Deuteronen zu wachsen. Die Substitution von Protonen durch Deuteronen an einem C-Atom bewirkt in allen bisher vermessenen Verbindungen eine Verschiebung nach höherem Feld (Tabelle 1, Abb. 1). Einflüsse auf die ¹³C-Signale benachbarter Kohlenstoffatome sind kleiner als 0.2 ppm. Im Gegensatz zu den verhältnismässig geringfügigen Isotopieeffekten des Deuteriums auf die ¹³C-chemischen Verschiebungen sind die Kohlenstoff-Deuterium-Kopplungskonstanten Jcp wesentlich kleiner als die vergleichbaren Direktkopplungen J_{CH} (Tabelle 1). Für sp³ und sp² hybridisierte deuterierte Kohlenstoffatome misst man Jcp-Werte zwischen 18 und 35 Hz (Tabelle 1, Abb. 1). Wie die Kohlenstoff-Protonen-Kopplungskonstanten[1-3] wachsen die J_{cp}-Werte mit zunehmendem s-Charakter der Kohlenstoff-Deuterium-Bindung sowie mit zunehmendem Elektronenzug an dem zur C-D-Bindung beitragenden C-Atom. So ist J_{CD} in Tetradeuteriomethanol sp³-hybridisiertem mit Kohlenstoff wesentlich kleiner (22 Hz) als in Dideuterioameisensäure (34 Hz), deren Kohlenstoff sp2-hybridisiert ist. Den entsprechenden Trend erkennt man beim Vergleich der C-D-Kopplungskonstanten der beiden Trideuteriomethyl-Kohlenstoffe (sp3) und des Deuterioformylkohlenstoffs (sp^2) in Heptadeuterio-N,N-dimethylformamid (Tabelle 1). Der Einfluss zunehmenden Elektronenzugs am koppelnden C-Atom auf J_{CD} offenbart sich am besten bei polyhalogenierten Alkanen: Die Kopplungskonstanten J_{CD} von Deuteriochloroform und 1,1,2,2-Tetrabrom-1,2-dideuterioäthan sind größer als die für Dideuteriodichlormethan und 1.2-Dibrom-1.1.2.2-tetradeuterioäthan gemessenen Werte (Tabelle 1), wobei mit zunehmender Anzahl der Halogenatome, also beim Übergang von

		¹³ C-Chemische				
		Verschiebungen			Konnlung	konstanten
		δ [ppm]			J [Hz]	
			- (PP)		• [·	
Verbindung	C-Atom	н	D	$\delta_H - \delta_D$	№С—Н	¹³ C—D
Bromoform		12.52	- 12.41	-0-11	205.0	31.7
Chloroform		- 77.25	-76.93	-0.32	209.9	32.3
Methylbromid		-9.28	-8-85	-0.43	152.8	23.2
Methyliodid		+20.28	+20.50	-0.22	151-3	24.4
Nitromethan		-61.18	-60.55	-0.63	146.5	23-7
Methylenchlorid		- 53.73	- 53.08	-0.65	178.2	26.9
Äthylbromid	CH.	- 19-20	- 18.67	-0.53	178-1	19.5
. tenytoronna	CH.	-27.40	- 27.19	-0.21	152.5	24.4
1.2-Dibromäthan		- 31.18	- 30.32	-0.86	152-5	24-4
1 1 2 2 Tetro		74.55	74.32	0.00	137-4	24.4
ahlaröthan		- 74.33	- 74.23	-0.32	190.0	28.1
Methonal		40.01	47.07			
A thomas	<u></u>	- 48.01	- 47.07	~ 0.94	140.4	22.0
Athanoi		- 16-94	- 15.75	- 1.19	126.9	19.5
D 10		- 56.32	- 55.35	-0.97	140.4	22.0
Propanol-2	CH ₃	- 24.38	-23.20	- 1.18	126-9	19.5
*	СН	- 62 69	- 62-15	-0.54	142.8	22.0
Athylenglycol		- 63.01	-61.93	- 1.08	140-4	22.0
Diathylather	CH_3	-14.03	- 12-95	-1.08	126-9	19-5
	CH ₂	- 64 • 74	- 63.66	- 1·08	136.7	22.0
Tetrahydrofuran	CH2	- 26.03	- 24.06	<i>−</i> 0·97	133-0	22.0
	CH₂O	- 66.89	- 66-03	- 0.86	148-9	22.0
Dioxan		- 66-46	- 65-38	-1.08	146-4	22.0
Ameisensäure		- 165-72	- 165-29	-0.43	222.1	34.2
Essigsäure	CH3	- 19.10	- 18-25	-0.87	129-4	19.5
	C00	- 177.05	- 176-62	-0.43	7.3	< 5.0
Trifluoressigsäure	CF_3	-113-61	-113.50	-0.11	283.2-	283.2+
	CO0	- 161-41	- 161·08	-0.33	43 •9⁺	44·0+
Acetonitril	CH3	-0.32	+ 0.22	- 0.54	107-4	17.1
	CN	116-84	-116-85	+ 0.01	9.8	< 5.0
Essigsäuremethyl- ester	CCH3	<i>−</i> 18·67	- 17-91	-0.76	129-3	19.5
	OCH ₃	- 49-85	- 49.09	-0.76	146-4	22.0
	COO	- 169-82	- 169-82	0.00	7.3	< 5.0
Aceton	CH3	- 28.92	- 28.05	-0.87	125.7	19.5
	CO	- 204 · 13	- 204-35	+ 0.22	7.3	5.0
Hexafluoraceton- sesquihydrat	C(OH) ₂	- 90.52	-90-31	-0.21	34.2+	34.2+
	CF3	-120.41	- 120-25	-0.16	286-8+	285.6+
Dimethylsulfoxid	CH ₃	- 40.78	- 39.60	-1.18	136.7	21.0
Sulfolan	CCH ₂	- 22.66	- 21.36	-0.30	129-4	19.5
	SCH₂	- 50-93	- 50-06	-0.87	142.8	22.0
Cyclohexan		- 26.54	- 25-14	- 1.40	125-7	20.7
Dimethylformamid	CH3	- 29.83	- 29.02	-0.81	137-9	22.0
	CH3	- 34-95	- 34.09	-0.86	137.9	22.0
	со	- 161-78	- 161-62	-0.16	188.0	29.3
Dimethylacetamid	CH_3	- 20.61	- 19.77	-0.87	126-9	19.5
	NCH ₃	- 33.66	-32.75	-0.91	136-7	20.7
	NCH ₃	- 36.79	- 35-93	-0.86	139-1	20.7
	со	- 169-07	- 169-07	0.0	7.3	5.0
Tetramethyl- harnstoff	CH ₃	- 37.76	- 36.90	- 0.86	136.7	22.0
Hexamethylphos-	<u> </u>	- 164-43	- 164.54	-0.11	< 5.0	< 5.0
nhorsäuretriamid		- 36.47	- 35.39	-1.08	129.4	22.0
Cyclosilan	CD-		-1.08	- 00		18-0
C) vivonum	CH.	- 2.27		_	110-0	
Benzol	~2	-128.53	-127.88	-0.66	161-1	25-6
						-

Tabelle 1.	¹³ C-Chemische Verschiebungen, ¹³ C- ¹ H- und ¹³ C-D-Kopplungskonstanten in
	protonierten und gleichen deuterierten Verbindungen

Verbindung	C-Atom	¹³ C-Chemische Verschiebungen δ [ppm]			Kopplungskonstanten J [Hz]	
		Н	D	$\delta_H - \delta_D$	'³С—Н	¹³ CD
Brombenzol	C-1	- 122.35	- 122.03	-0.32	_	_
	C-2	-131.20	- 130-87	-0.33	161-1	24.4
	C-3	- 129-80	- 129.15	-0.65	163-6	24-4
	C-4	- 126-56	- 126.02	-0.54	161-1	24.4
Tohuol	C-1	- 136.70	- 136-38	-0.32	—	_
	C-2	- 128·18	- 127.85	-0.33	158.7	24.4
	Č-3	- 127.42	- 126.77	-0.65	158.7	24.4
	C-4	- 124.51	- 123-86	-0.65	158.7	24.4
	CH ₃	20.28	- 19-20	- 1.08	129-4	20.8
Nitrobenzol	C-1	- 147-17	- 147.06	-0.11	_	—
	C-2	- 128-61	- 127-96	-0.65	167-2	24.4
	C-3	-122.46	- 121.92	-0.54	170-9	24.4
	C-4	-133.90	-133-36	-0.54	163-6	24-4
Pyridin	C-2	-149.22	— 148 ∙68	-0.54	170.0	26.8
	C-3	123.00	- 122-55	-0.65	163·0	24.4
	C-4	-134.87	- 134-33	-0.54	152.0	24.4

Tabelle 1. (Forsetzung)

Abb 1. $22.63 \text{ MHz PFT}^{13}C{^{1}H}-NMR-Spektrum von reinem Pentadeuteropyridin (99.5%); 30°,$ $8192 akkumulierte Impulsinterferogramme (Impulsbreite 5 <math>\mu$ sec; Impulsintervall 1.6 sec; phasenkorrigiert).

 CD_2Cl_2 nach $CDCl_3$ und von $Br-CD_2-CD_2-Br$ nach $Br_2CD-CDBr_2$ die Kopplungskonstanten J_{CD} um etwa 4 Hz zunehmen. Induktive Effekte auf J_{CD} scheinen also annähernd additiv zu sein, wie es auch für die Kohlenstoff-Protonen-Kopplung beschrieben wurde.^{4,5} Eine MO-theoretische Behandlung der Spin-Spin-Kopplung von AX-Systemen^{6,7} ergibt eine Beziehung (Gl. 1) zwischen der Kohlenstoff-X-Kopplungskonstanten J_{CX} , der für die Kohlenstoffhybridisierung charakteristischen Bindungsordnungsmatrix $P_{S_CS_X}$, den für die Bindungspolaritäten charakteristischen Kohlenstoff 2S und Protonen 1S Orbitaldichten $S_c^2(0)$ und $S_H^2(0)$, sowie der numerisch nicht exakt definierten durchschnittlichen Elektronenanregungsenergie ΔE_r der CX-Gruppierung

$$\mathbf{J}_{CX} = (\frac{4}{3})^2 h \mu_B \gamma_c \gamma_x \mathbf{P}_{S_C S_X}^2 S_C^2(0) S_H^2(0) (\Delta \mathbf{E}_e)^{-1}.$$
(1)

Die Konstanten in Gl. (1) sind das Planck'sche Wirkungsquantum h, das Bohr'sche Magneton μ_B und die gyromagnetischen Verhältnisse γ_c und γ_x von Kohlenstoff und Kern X. Unter der Voraussetzung, dass bei der Substitution von H durch D sich die Bindungsverhältnisse und somit die Ausdrücke $P_{S_CS_X}$, $S_{C(0)}$, $S_X(0)$ und ΔE_e nicht ändern, sollten sich die Kopplungskonstanten J_{CD} und J_{CH} wie die gyromagnetischen Verhältnisse von Deuterium und Wasserstoff verhalten (Gl. 2).

$$\frac{\mathbf{J}_{\rm CD}}{\mathbf{J}_{\rm CH}} = \frac{\gamma_{\rm D}}{\gamma_{\rm H}} = 0.154 \tag{2}$$

für $\gamma_{\rm H} = 4~257 \cdot 7~{\rm Hz}~{\rm Gauss^{-1}}$ und $\gamma_{\rm D} = 653 \cdot 6~{\rm Hz}~{\rm Gauss^{-1}}$.

Trägt man daher die J_{CD} -Werte von CD_x Gruppen gegen die J_{CH} -Werte der isotopen CH_x Gruppen derselben Verbindungen auf, so sollte sich eine Ursprungsgerade mit Steigung γ_D/γ_H ergeben. Abb. 2 zeigt, daß die aus Tabelle 1 entnommenen Messpaare J_{CD} und J_{CH} tatsächlich auf einer solchen Geraden liegen. Die Abweichungen der gemes-

senen J_{CD} -Werte von der-Geraden $J_{CD} = 0.154$, J_{CH} sind oft geringer als 1Hz.

EXPERIMENTELLER TEIL

Beschreibung der Messungen. Die Impuls-Fourier-Transform-13C-NMR-Messungen wurden mit einem Bruker-HFX-90-NMR-Spektrometer durchgeführt (90 MHz für ¹H; 22·628 MHz für ¹³C; 13 MHz für D). Als Proben wurden die im Handel erhältlichen flüssigen Reinsubstanzen verwendet, auf deren Deuteriumresonanzen das Feld/Frequenz-Verhältnis stabilisiert wurde. Zur Standardisierung wurde eine mit Tetramethylsilan gefüllte, abgeschmolzene Kapillare (Durchmesser 2 mm) im Probenrohr (Durchmesser 10 mm) coaxial zentriert. Zur Messung wurden je nach Signal: Rauschen-Verhältnis 2048 bis 8192 Impulsinterferogramme in einem Fabritek 1074 Datenspeicher akkumuliert (4096 Datenpunkte; Impulsbreite 5 μ sec, Abtastzeit pro Punkt 100, 200 und 400 µsec entsprechend 100, 50 und 25 Hz/cm NMR-Spektren). Die Fourier-Transformation und Phasenkorrektur wurde mit einem Digital PDP-8-I-Rechner durchgeführt. Die chemischen Verschiebungen und Kopplungskonstanten wurden als Adressendifferenzen digital entnommen und auf ppm bzw. Hz umgerechnet. Die Genauigkeit der Messungen war ± 0.05 ppm für δ und ± 0.6 Hz für J.

Abb 2. Lineare Korrelation von J_{CD} und J_{CH}.

¹Siehe z.B. P. S. Pregosin und E. W. Randall, ¹³C Nuclear Magnetic Resonance in F. C. Nachod und J. J. Zuckerman (Herausg.), Determination of Organic Structures by Physical Methods Vol. 4, Kap. 6. Academic Press, New York and London (1971)

²G. E. Maciel, J. W. McIver, Jr., N. S. Ostlund und J. A.

Pople, J. Am. Chem. Soc. 92, 1 (1970)

- ³G. E. Maciel, J. W. McIver, Jr., N. S. Ostlund und J. A. Pople, *Ibid.* 92, 11 (1970)
- 4E. R. Malinowski, Ibid. 83, 4479 (1961)
- ⁵A. W. Douglass, J. Chem. Phys. 40, 2413 (1964)
- ^eH. M. McConnell, Ibid. 24, 460 (1956)
- ⁷J. A. Pople and D. Santry, Mol. Phys. 8, 1 (1963)